

Analog Devices Welcomes Hittite Microwave Corporation

NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED

www.hittite.com

www.analog.com

THIS PAGE INTENTIONALLY LEFT BLANK

14 Gbps, FAST RISE TIME AND / NAND / OR / NOR GATE

Supports High Data Rates: up to 14 Gbps Differential or Single-Ended Operation

Fast Rise and Fall Times: 19 / 18 ps

Propagation Delay: 95 ps Single Supply: -3.3 V

General Description

AND, NAND, OR and NOR.

Low Power Consumption: 230 mW typ.

16 Lead Ceramic 3x3 mm SMT Package: 9mm²

The HMC726LC3C is an AND/NAND/OR/NOR fun-

ction designed to support data transmission rates of up to 14 Gbps, and clock frequencies as high

as 14 GHz. The HMC726LC3C may be easily configured to provide any of the following logic functions:

All differential inputs to the HMC726LC3C are CML

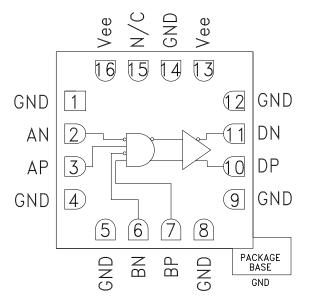
and terminated on-chip with 50 Ohms to the positive supply, GND, and may be DC or AC coupled. The

differential CMI outputs are source terminated to to 50 Ohms and may also be AC or DC coupled. Outputs can

be connected directly to a 50 Ohm ground-terminated

system or drive devices with CML logic input. The HMC726LC3C operates from a single -3.3 V supply and

is available in ROHS-compliant 3x3 mm SMT package.


Features

Typical Applications

The HMC726LC3C is ideal for:

- 16 G Fiber Channel
- RF ATE Applications
- Broadband Test & Measurement
- Serial Data Transmission up to 14 Gbps
- Digital Logic Systems up to 14 GHz
- NRZ-to-RZ Conversion

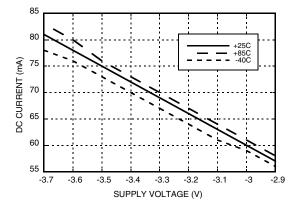
Functional Diagram

Electrical Specifications, $T_A = +25^{\circ}C$, Vee = -3.3 V

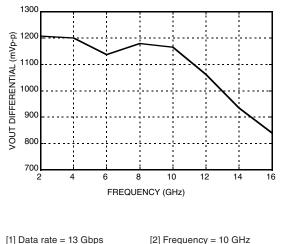
Parameter Conditions Units Min. Тур. Max Power Supply Voltage -3.6 -3.3 -3.0 V Power Supply Current 70 mΑ Gbps Maximum Data Rate 14 Maximum Clock Rate 14 GHz V Input Voltage Range -1.5 0.5 Input Differential Range 0.1 2.0 Vp-p Input Return Loss dB Frequency <14 GHz 10 Single-Ended, peak-to-peak 550 mVp-p **Output Amplitude** 1100 Differential, peak-to-peak mVp-p -10 **Output High Voltage** mV **Output Low Voltage** -560 mV Differential, 20% - 80% Output Rise / Fall Time 19 / 18 ps

For price, delivery and to place orders: Hittite Microwave Corporation, 2 Elizabeth Drive, Chelmsford, MA 01824 Phone: 978-250-3343 Fax: 978-250-3373 Order On-line at www.hittite.com Application Support: Phone: 978-250-3343 or apps@hittite.com

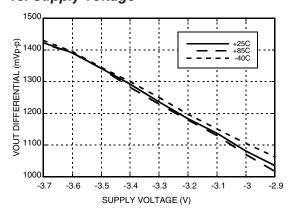
1

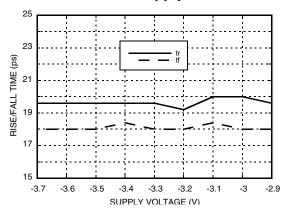

14 Gbps, FAST RISE TIME AND / NAND / OR / NOR GATE

Electrical Specifications (continued)


Parameter	Conditions	Min.	Тур.	Max	Units
Output Return Loss	Frequency <14 GHz		10		dB
Small Signal Gain			27		dB
Random Jitter Jr	rms			0.2	ps rms
Deterministic Jitter, Jd	peak-to-peak, 2 ¹⁵ -1 PRBS input ^[1]		2		ps, p-p
Propagation Delay, td			95		ps

[1] Deterministic jitter calculated by simultaneously measuring the jitter of a 300 mV, 13 GHz, 2¹⁵-1 PRBS input, and a single-ended output

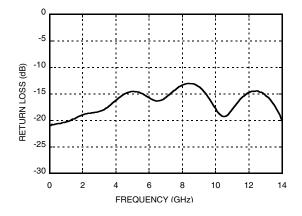

DC Current vs. Supply Voltage [1]

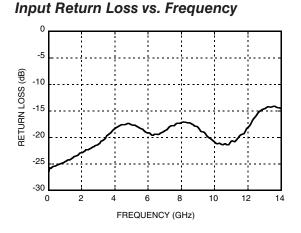

Output Differential Voltage vs. Frequency [3]

Output Differential Voltage vs. Supply Voltage ^[2]

Rise / Fall Time vs. Supply [1]

[2] Frequency = 10 GHz [3] Vee = -3.3 V

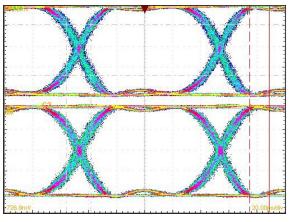

For price, delivery and to place orders: Hittite Microwave Corporation, 2 Elizabeth Drive, Chelmsford, MA 01824 Phone: 978-250-3343 Fax: 978-250-3373 Order On-line at www.hittite.com Application Support: Phone: 978-250-3343 or apps@hittite.com

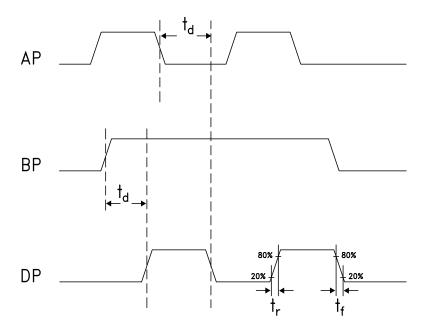

HIGH SPEED LOGIC - SMT

Output Return Loss vs. Frequency

HMC726LC3C

14 Gbps, FAST RISE TIME AND / NAND / OR / NOR GATE




14 Gbps, FAST RISE TIME AND / NAND / OR / NOR GATE

Eye Diagram

Timing Diagram

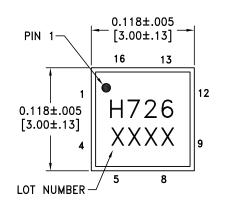
Truth Table

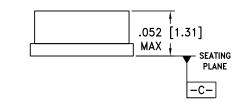
Input		Outputs
A	В	D
L	L	L
L	Н	L
Н	L	L
Н	Н	Н
Notes: A = AP - AN B = BP - BN D = DP - DN	H - Positive voltage level L - Negative voltage level	

[1] Test Conditions:

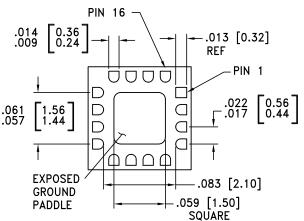
Pattern generated with an Agilent N4903A Serial BERT. Eye Diagram presented on a Tektronix CSA 8000. Device input = 10 Gbps PN code, Vin = 300 mVp-p differential.

14 Gbps, FAST RISE TIME AND / NAND / OR / NOR GATE


ROHS


Absolute Maximum Ratings

Power Supply Voltage (Vee)	-3.75 V to +0.5 V
Input Signals	-2 V to +0.5 V
Output Signals	-1.5 V to +1 V
Continuous Pdiss (T = 85 °C) (derate 17 mW/°C above 85 °C)	0.68 W
Thermal Resistance (R _{th j-p}) Worst case junction to package paddle	59 °C/W
Maximum Junction Temperature	125 °C
Storage Temperature	-65 °C to +150 °C
Operating Temperature	-40 °C to +85 °C
ESD Sensitivity (HBM)	Class 1C



Outline Drawing

BOTTOM VIEW

NOTES: 1. PACKAGE BODY MATERIAL: ALUMINA

2. LEAD AND GROUND PADDLE PLATING:

30-80 MICROINCHES GOLD OVER 50 MICROINCHES MINIMUM NICKEL.

3. DIMENSIONS ARE IN INCHES [MILLIMETERS].

4. LEAD SPACING TOLERANCE IS NON-CUMULATIVE.

5. PACKAGE WARP SHALL NOT EXCEED 0.05 mm DATUM -C-

6. ALL GROUND LEADS MUST BE SOLDERED TO PCB RF GROUND.

7. PADDLE MUST BE SOLDERED TO GND.

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking ^[2]
HMC726LC3C	Alumina, White	Gold over Nickel	MSL3 ^[1]	H726 XXXX

[1] Max peak reflow temperature of 260 °C

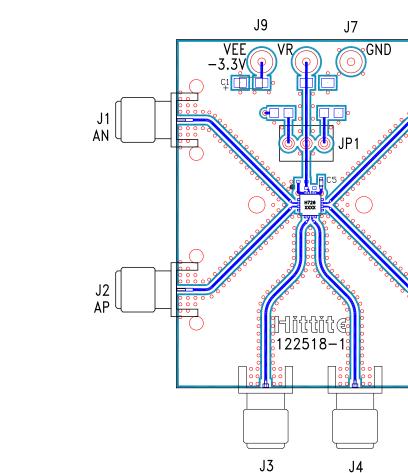
[2] 4-Digit lot number XXXX

14 Gbps, FAST RISE TIME AND / NAND / OR / NOR GATE

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1, 4, 5, 8, 9, 12	GND	Signal Grounds	
2, 3 6, 7	AN, AP BN, BP	Differential Data Inputs, Current Mode Logic (CML) referenced to positive supply.	
10, 11	DP, DN	Differential Data Outputs, Current Mode Logic (CML) referenced to positive supply.	GND O GND O GND O DN
13, 16	Vee	Negative Supply	
14, Package Base	GND	Supply Ground	
15	N/C	No Connection required. This pin may be connected to RF/DC ground without affecting performance.	

14 Gbps, FAST RISE TIME AND / NAND / OR / NOR GATE


J6

DN

J5 DP

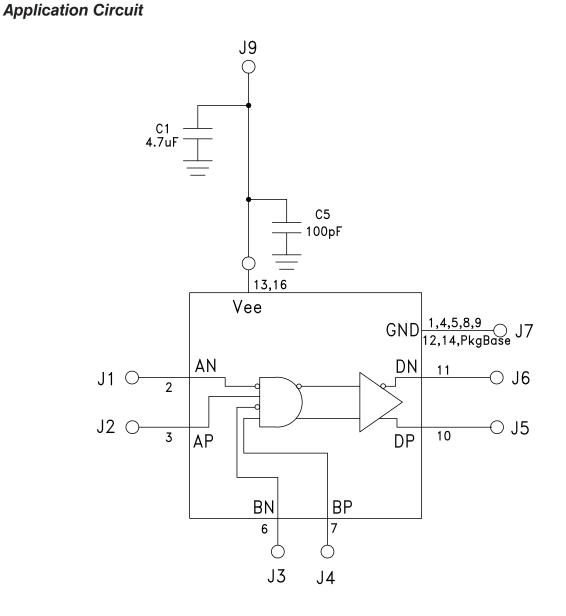
Evaluation PCB

List of Materials for Evaluation PCB 122520^[1]

ΒN

BP

Item	Description	
J1 - J6	PCB Mount SMA RF Connectors	
J7, J9	DC Pin	
C1	4.7 µF Capacitor, Tantalum	
C5	100 pF Capacitor, 0402 Pkg.	
U1	HMC726LC3C High Speed Logic, AND / NAND / OR / NOR	
PCB ^[2] 122518 Evaluation Board		


Reference this number when ordering complete evaluation PCB
Circuit Board Material: Arlon 25FR or Rogers 4350

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads should be connected directly to the ground plane similar to that shown. The exposed package base should be connected to GND. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.

14 Gbps, FAST RISE TIME AND / NAND / OR / NOR GATE

EARTH FRIENDLY

